Recent developments in stress and anxiety research

  • Published: 01 September 2021
  • Volume 128 , pages 1265–1267, ( 2021 )

Cite this article

  • Urs M. Nater 1 , 2  

4946 Accesses

2 Citations

Explore all metrics

Avoid common mistakes on your manuscript.

Stress and anxiety are virtually omnipresent in today´s society, pervading almost all aspects of our daily lives. While each and every one of us experiences “stress” and/or “anxiety” at least to some extent at times, the phenomena themselves are far from being completely understood. In stress research, scientists are particularly grappling with the conceptual issue of how to define stress, also with regard to delimiting stress from anxiety or negative affectivity in general. Interestingly, there is no unified theory of stress, despite many attempts at defining stress and its characteristics. Consequently, the available literature relies on a variety of different theoretical approaches, though the theories of Lazarus and Folkman ( 1984 ) or McEwen ( 1998 ) are relatively pervasive in the literature. One key issue in conceptualizing stress is that research has not always differentiated between the perception of a stimulus or a situation as a stressor and the subsequent biobehavioral response (often called the “stress response”). This is important, since, for example, psychological factors such as uncontrollability and social evaluation, i.e. factors that may influence how an individual perceives a potentially stressful stimulus or situation, have been identified as characteristics that elicit particularly powerful physiological stressful responses (Dickerson and Kemeny 2004 ). At the core of the physiological stress response is a complex physiological system, which is located in both the central nervous system (CNS) and the body´s periphery. The complexity of this system necessitates a multi-dimensional assessment approach involving variables that adequately reflect all relevant components. It is also important to consider that the experience of stress and its psychobiological correlates do not occur in a vacuum, but are being shaped by numerous contextual factors (e.g. societal and cultural context, work and leisure time, family and dyadic systems, environmental variables, physical fitness, nutritional status, etc.) and dispositional factors (e.g. genetics, personality, resilience, regulatory capacities, self-efficacy, etc.). Thus, a theoretical framework needs to incorporate these factors. In sum, as stress is considered a multi-faceted and inherently multi-dimensional construct, its conceptualization and operationalization needs to reflect this (Nater 2018 ).

The goal of the World Association for Stress Related and Anxiety Disorders (WASAD) is to promote and make available basic and clinical research on stress-related and anxiety disorders. Coinciding with WASAD’s 3rd International Congress held in September 2021 in Vienna, Austria, this journal publishes a Special Issue encompassing state-of-the art research in the field of stress and anxiety. This special issue collects answers to a number of important questions that need to be addressed in current and future research. Among the most relevant issues are (1) the multi-dimensional assessment that arises as a consequence of a multi-faceted consideration of stress and anxiety, with a particular focus on doing so under ecologically valid conditions. Skoluda et al. 2021 (in this issue) argue that hair as an important source of the stress hormone cortisol should not only be taken as a complementary stress biomarker by research staff, but that lay persons could be also trained to collect hair at the study participants’ homes, thus increasing the ecological validity of studies incorporating this important measure; (2) the incongruence between psychological and biological facets of stress and anxiety that has been observed both in laboratory and field research (Campbell and Ehlert 2012 ). Interestingly, there are behavioral constructs that do show relatively high congruence. As shown in the paper of Vatheuer et al. ( 2021 ), gaze behavior while exposed to an acute social stressor correlates with salivary cortisol, thus indicating common underlying mechanisms; (3) the complex dynamics of stress-related measures that may extend over shorter (seconds to minutes), medium (hours and diurnal/circadian fluctuations), and longer (months, seasonal) time periods. In particular, momentary assessment studies are highly qualified to examine short to medium term fluctuations and interactions. In their study employing such a design, Stoffel and colleagues (Stoffel et al. 2021 ) show ecologically valid evidence for direct attenuating effects of social interactions on psychobiological stress. Using an experimental approach, on the other hand, Denk et al. ( 2021 ) examined the phenomenon of physiological synchrony between study participants; they found both cortisol and alpha-amylase physiological synchrony in participants who were in the same group while being exposed to a stressor. Importantly, these processes also unfold over time in relation to other biological systems; al’Absi and colleagues showed in their study (al’Absi et al. 2021 ) the critical role of the endogenous opioid system and its relation to stress-related analgesia; (4) the influence of contextual and dispositional factors on the biological stress response in various target samples (e.g., humans, animals, minorities, children, employees, etc.) both under controlled laboratory conditions and in everyday life environments. In this issue, Sattler and colleagues show evidence that contextual information may only matter to a certain extent, as in their study (Sattler et al. 2021 ), the biological response to a gay-specific social stressor was equally pronounced as the one to a general social stressor in gay men. Genetic information is probably the most widely researched dispositional factor; Kuhn et al. show in their paper (Kuhn et al. 2021 ) that the low expression variant of the serotonin transporter gene serves as a risk factor for increased stress reactivity, thus clearly indicating the important role of dispositional factors in stress processing. An interesting factor combining both aspects of dispositional and contextual information is maternal care; Bentele et al. ( 2021 ) in their study are able to show that there was an effect of maternal care on the amylase stress response, while no such effect was observed for cortisol. In a similar vein, Keijser et al. ( 2021 ) showed in their gene-environment interaction study that the effects of FKBP5, a gene very closely related to HPA axis regulation, and early life stress on depressive symptoms among young adults was moderated by a positive parenting style; and (5) the role of stress and anxiety as transdiagnostic factors in mental disorders, be it as an etiological factor, a variable contributing to symptom maintenance, or as a consequence of the condition itself. Stress, e.g., as a common denominator for a broad variety of psychiatric diagnoses has been extensively discussed, and stress as an etiological factor holds specific significance in the context of transdiagnostic approaches to the conceptualization and treatment of mental disorders (Wilamowska et al. 2010 ). The HPA axis, specifically, is widely known to be dysregulated in various conditions. Fischer et al. ( 2021 ) discuss in their comprehensive review the role of this important stress system in the context of patients with post-traumatic disorder. Specifically focusing on the cortisol awakening response, Rausch and colleagues provide evidence for HPA axis dysregulation in patients diagnosed with borderline personality disorder (Rausch et al. 2021 ). As part of a longitudinal project on ADHD, Szep et al. ( 2021 ) investigated the possible impact of child and maternal ADHD symptoms on mothers’ perceived chronic stress and hair cortisol concentration; although there was no direct association, the findings underline the importance of taking stress-related assessments into consideration in ADHD studies. As the HPA axis is closely interacting with the immune system, Rhein et al. ( 2021 ) examined in their study the predicting role of the cytokine IL-6 on psychotherapy outcome in patients with PTSD, indicating that high reactivity of IL-6 to a stressor at the beginning of the therapy was associated with a negative therapy outcome. The review of Kyunghee Kim et al. ( 2021 ) also demonstrated the critical role of immune pathways in the molecular changes due to antidepressant treatment. As for the therapy, the important role of cognitive-behavioral therapy with its key elements to address both stress and anxiety reduction have been shown in two studies in this special issue, evidencing its successful application in obsessive–compulsive disorder (Ivarsson et al. 2021 ; Hollmann et al. 2021 ). Thus, both stress and anxiety are crucial transdiagnostic factors in various mental disorders, and future research needs elaborate further on their role in etiology, maintenance, and treatment.

In conclusion, a number of important questions are being asked in stress and anxiety research, as has become evident above. The Special Issue on “Recent developments in stress and anxiety research” attempts to answer at least some of the raised questions, and I want to invite you to inspect the individual papers briefly introduced above in more detail.

al’Absi M, Nakajima M, Bruehl S (2021) Stress and pain: modality-specific opioid mediation of stress-induced analgesia. J Neural Transm. https://doi.org/10.1007/s00702-021-02401-4

Article   PubMed   Google Scholar  

Bentele UU, Meier M, Benz ABE, Denk BF, Dimitroff SJ, Pruessner JC, Unternaehrer E (2021) The impact of maternal care and blood glucose availability on the cortisol stress response in fasted women. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02350-y

Article   Google Scholar  

Campbell J, Ehlert U (2012) Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology 37(8):1111–1134. https://doi.org/10.1016/j.psyneuen.2011.12.010

Denk B, Dimitroff SJ, Meier M, Benz ABE, Bentele UU, Unternaehrer E, Popovic NF, Gaissmaier W, Pruessner JC (2021) Influence of stress on physiological synchrony in a stressful versus non-stressful group setting. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02384-2

Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355–391

Fischer S, Schumacher T, Knaevelsrud C, Ehlert U, Schumacher S (2021) Genes and hormones of the hypothalamic-pituitary-adrenal axis in post-traumatic stress disorder. What is their role in symptom expression and treatment response? J Neural Transm (vienna). https://doi.org/10.1007/s00702-021-02330-2

Hollmann K, Allgaier K, Hohnecker CS, Lautenbacher H, Bizu V, Nickola M, Wewetzer G, Wewetzer C, Ivarsson T, Skokauskas N, Wolters LH, Skarphedinsson G, Weidle B, de Haan E, Torp NC, Compton SN, Calvo R, Lera-Miguel S, Haigis A, Renner TJ, Conzelmann A (2021) Internet-based cognitive behavioral therapy in children and adolescents with obsessive compulsive disorder: a feasibility study. J Neural Transm. https://doi.org/10.1007/s00702-021-02409-w

Ivarsson T, Melin K, Carlsson A, Ljungberg M, Forssell-Aronsson E, Starck G, Skarphedinsson G (2021) Neurochemical properties measured by 1 H magnetic resonance spectroscopy may predict cognitive behaviour therapy outcome in paediatric OCD: a pilot study. J Neural Transm. https://doi.org/10.1007/s00702-021-02407-y

Keijser R, Olofsdotter S, Nilsson WK, Åslund C (2021) Three-way interaction effects of early life stress, positive parenting and FKBP5 in the development of depressive symptoms in a general population. J Neural Transm. https://doi.org/10.1007/s00702-021-02405-0

Kuhn L, Noack H, Skoluda N, Wagels L, Rohr AK, Schulte C, Eisenkolb S, Nieratschker V, Derntl B, Habel U (2021) The association of the 5-HTTLPR polymorphism and the response to different stressors in healthy males. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02390-4

Kyunghee Kim H, Zai G, Hennings J, Müller DJ, Kloiber S (2021) Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm. https://doi.org/10.1007/s00702-021-02394-0

Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer Publisher Company Inc, New York

Google Scholar  

McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179

Article   CAS   Google Scholar  

Nater UM (2018) The multidimensionality of stress and its assessment. Brain Behav Immun 73:159–160. https://doi.org/10.1016/j.bbi.2018.07.018

Rausch J, Flach E, Panizza A, Brunner R, Herpertz SC, Kaess M, Bertsch K (2021) Associations between age and cortisol awakening response in patients with borderline personality disorder. J Neural Transm. https://doi.org/10.1007/s00702-021-02402-3

Rhein C, Hepp T, Kraus O, von Majewski K, Lieb M, Rohleder N, Erim Y (2021) Interleukin-6 secretion upon acute psychosocial stress as a potential predictor of psychotherapy outcome in posttraumatic stress disorder. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02346-8

Sattler FA, Nater UM, Mewes R (2021) Gay men’s stress response to a general and a specific social stressor. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02380-6

Skoluda N, Piroth I, Gao W, Nater UM (2021) HOME vs. LAB hair samples for the determination of long-term steroid concentrations: a comparison between hair samples collected by laypersons and trained research staff. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02367-3

Stoffel M, Abbruzzese E, Rahn S, Bossmann U, Moessner M, Ditzen B (2021) Covariation of psychobiological stress regulation with valence and quantity of social interactions in everyday life: disentangling intra- and interindividual sources of variation. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02359-3

Szep A, Skoluda N, Schloss S, Becker K, Pauli-Pott U, Nater UM (2021) The impact of preschool child and maternal attention-deficit/hyperactivity disorder (ADHD) symptoms on mothers’ perceived chronic stress and hair cortisol. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02377-1

Vatheuer CC, Vehlen A, von Dawans B, Domes G (2021) Gaze behavior is associated with the cortisol response to acute psychosocial stress in the virtual TSST. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02344-w

Wilamowska ZA, Thompson-Hollands J, Fairholme CP, Ellard KK, Farchione TJ, Barlow DH (2010) Conceptual background, development, and preliminary data from the unified protocol for transdiagnostic treatment of emotional disorders. Depress Anxiety 27(10):882–890. https://doi.org/10.1002/da.20735

Download references

Author information

Authors and affiliations.

Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria

Urs M. Nater

University Research Platform ‘The Stress of Life – Processes and Mechanisms Underlying Everyday Life Stress’, University of Vienna, Vienna, Austria

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Urs M. Nater .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Nater, U.M. Recent developments in stress and anxiety research. J Neural Transm 128 , 1265–1267 (2021). https://doi.org/10.1007/s00702-021-02410-3

Download citation

Accepted : 13 August 2021

Published : 01 September 2021

Issue Date : September 2021

DOI : https://doi.org/10.1007/s00702-021-02410-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Research article
  • Open access
  • Published: 15 April 2020

Practice of stress management behaviors and associated factors among undergraduate students of Mekelle University, Ethiopia: a cross-sectional study

  • Gebrezabher Niguse Hailu 1  

BMC Psychiatry volume  20 , Article number:  162 ( 2020 ) Cite this article

30k Accesses

1 Citations

Metrics details

Stress is one of the top five threats to academic performance among college students globally. Consequently, students decrease in academic performance, learning ability and retention. However, no study has assessed the practice of stress management behaviors and associated factors among college students in Ethiopia. So the purpose of this study was to assess the practice of stress management behaviors and associated factors among undergraduate university students at Mekelle University, Tigray, Ethiopia, 2019.

A cross-sectional study was conducted on 633 study participants at Mekelle University from November 2018 to July 2019. Bivariate analysis was used to determine the association between the independent variable and the outcome variable at p  < 0.25 significance level. Significant variables were selected for multivariate analysis.

The study found that the practice of stress management behaviors among undergraduate Mekelle university students was found as 367(58%) poor and 266(42%) good. The study also indicated that sex, year of education, monthly income, self-efficacy status, and social support status were significant predictors of stress management behaviors of college students.

This study found that the majority of the students had poor practice of stress management behaviors.

Peer Review reports

Stress is the physical and emotional adaptive response to an external situation that results in physical, psychological and behavioral deviations [ 1 ]. Stress can be roughly subdivided into the effects and mechanisms of chronic and acute stress [ 2 ]. Chronic psychological stress in early life and adulthood has been demonstrated to result in maladaptive changes in both the HPA-axis and the sympathetic nervous system. Acute and time-limited stressors seem to result in adaptive redistribution of all major leukocyte subpopulations [ 2 ].

Stress management behaviors are defined as behaviors people often use in the face of stress /or trauma to help manage painful or difficult emotions [ 3 ]. Stress management behaviors include sleeping 6–8 h each night, Make an effort to monitor emotional changes, Use adequate responses to unreasonable issues, Make schedules and set priorities, Make an effort to determine the source of each stress that occurs, Make an effort to spend time daily for muscle relaxation, Concentrate on pleasant thoughts at bedtime, Feel content and peace with yourself [ 4 ]. Practicing those behaviors are very important in helping people adjust to stressful events while helping them maintain their emotional wellbeing [ 3 ].

University students are a special group of people that are enduring a critical transitory period in which they are going from adolescence to adulthood and can be one of the most stressful times in a person’s life [ 5 ]. According to the American College Health Association’s National College Health Assessment, stress is one of the top five threats to academic performance among college students [ 6 ]. For instance, stress is a serious problem in college student populations across the United States [ 7 ].

I have searched literatures regarding stress among college students worldwide. For instance, among Malaysian university students, stress was observed among 36% of the respondents [ 8 ]. Another study reported that 43% of Hong Kong students were suffered from academic stress [ 9 ]. In western countries and other Middle Eastern countries, including 70% in Jordan [ 10 ], 83.9% in Australia [ 11 ]. Furthermore, based on a large nationally representative study the prevalence of stress among college students in Ethiopia was 40.9% [ 12 ].

Several studies have shown that socio-demographic characteristics and psychosocial factors like social support, health value and perceived self-efficacy were known to predict stress management behaviors [ 13 , 14 , 15 , 16 , 17 ].

Although the prevalence of stress among college students is studied in many countries including Ethiopia, the practice of stress management behaviors which is very important in promoting the health of college students is not studied in Ethiopia. Therefore this study aimed to assess the practice of stress management behaviors and associated factors among undergraduate students at Mekelle University.

The study was conducted at Mekelle university colleges from November 2018 to July 2019 in Mekelle city, Tigray, Ethiopia. Mekelle University is a higher education and training public institution located in Mekelle city, Tigray at a distance of 783 Kilometers from the Ethiopian capital ( http://www.mu.edu.et/ ).

A cross-sectional study was conducted on 633 study participants. Students who were ill (unable to attend class due to illness), infield work and withdrawal were not included in the study.

The actual sample size (n) was computed by single population proportion formula [n = [(Za/2)2*P (1 − P)]/d2] by assuming 95% confidence level of Za/2 = 1.96, margin of error 5%, proportion (p) of 50% and the final sample size was estimated to be 633. A 1.5 design effect was used by considering the multistage sampling technique and assuming that there was no as such big variations among the students included in the study.

Multi-stage random sampling was used. Three colleges (College of health science, college of business and Economics and College of Natural and Computational Science) were selected from a total of the seven Colleges from Mekelle University using a simple random sampling technique in which proportional sample allocation was considered from each college.

Data were collected using a self-administered questionnaire by trained research assistants at the classes.

The questionnaire has three sections. The first section contained questions on demographic characteristics of the study participants. The second section contained questions to assess the practice of stress management of the students. The tool to assess the practice of stress management behaviors for college students was developed by Walker, Sechrist, and Pender [ 4 ]. The third section consisted of questions for factors associated with stress management of the students divided into four sub-domains, including health value used to assess the value participants place on their health [ 18 ]. The second subdomain is self-efficacy designed to assess optimistic self-beliefs to cope with a variety of difficult demands in life [ 19 ] and was adapted by Yesilay et al. [ 20 ]. The third subdomain is perceived social support measures three sources of support: family, friends, and significant others [ 21 ] and was adapted by Eker et al. [ 22 ]. The fourth subscale is perceived stress measures respondents’ evaluation of the stressfulness of situations in the past month of their lives [ 23 ] and was adapted by Örücü and Demir [ 24 ].

The entered data were edited, checked visually for its completeness and the response was coded and entered by Epi-data manager version 4.2 for windows and exported to SPSS version 21.0 for statistical analysis.

Bivariate analysis was used to determine the association between the independent variable and the outcome variable. Variables that were significant at p  < 0.25 with the outcome variable were selected for multivariable analysis. And odds ratio with 95% confidence level was computed and p -value <= 0.05 was described as a significant association.

Operational definition

Good stress management behavior:.

Students score above or equal to the mean score.

Poor stress management behavior:

Students score below the mean score [ 4 ].

Seciodemographic characteristics

Among the total 633 study participants, 389(61.5%) were males, of those 204(32.2%) had poor stress management behavior. The Median age of the respondents was 20.00 (IQR = ±3). More ever, this result showed that 320(50.6%) of the students came from rural areas, 215(34%) of them had poor stress management behavior.

The result revealed that 363(57.35%) of the study participants were 2nd and 3rd year students, of them 195 (30.8%) had poor stress management.

This result indicated that 502 (79.3%) of the participants were in the monthly support category of > = 300 ETB with a median income of 300.00 ETB (IQR = ±500), from those, 273(43.1%) students had poor stress management behavior (Table  1 ).

figure 1

Status of practice of stress management behaviors of under graduate students at Mekelle University, Ethiopia

Psychosocial factors

This result indicated that 352 (55.6%) of the students had a high health value status of them 215 (34%) had good stress management behavior. It also showed that 162 (25.6%) of the students had poor perceived self-efficacy, from those 31(4.9%) had a good practice of stress management behavior. Moreover, the result showed that 432(68.2%) of the study participants had poor social support status of them 116(18.3%) had a good practice of stress management behavior (Table  1 ).

Practice of stress management behaviors

The result showed that the majority (49.8%) of the students were sometimes made an effort to spend time daily for muscle relaxation. Whereas only 28(4.4%) students were routinely concentrated on pleasant thoughts at bedtime.

According to this result, only 169(26.7%) of the students were often made an effort to determine the source of stress that occurs. It also revealed that the majority (40.1%) of the students were never made an effort to monitor their emotional changes. Similarly, the result indicated that the majority (42.5%) of the students were never made schedules and set priorities.

The result revealed that only 68(10.7%) of the students routinely slept 6–8 h each night. More ever, the result showed that the majority (34.4%) of the students were sometimes used adequate responses to unreasonable issues (Table  2 ).

Status of the practice of stress management behaviors

The result revealed that the practice of stress management behaviors among regular undergraduate Mekelle university students was found as 367(58%) poor and 266(42%) good. (Fig  1 )

Factors associated with stress management behaviors

In the bivariate analysis sex, college, year of education, student’s monthly income’, perceived-self efficacy, perceived social support and perceived stress were significantly associated with stress management behavior at p < =0.25. Whereas in the multivariate analysis sex, year of education, student’s monthly income’, perceived-self efficacy and perceived social support were significantly associated with stress management behavior at p < =0.05.

Male students were 3.244 times more likely to have good practice stress management behaviors than female students (AOR: 3.244, CI: [1.934–5.439]). Students who were in the age category of less than 20 years were 70% less to have a good practice of stress management behaviors than students with the age of greater or equal to 20 year (AOR: 0.300, CI:[0.146–0.618]).

Students who had monthly income less than300 ETB were 64.4% less to have a good practice of stress management behaviors than students with monthly income greater or equal to 300 ETB (AOR: 0.356, CI:[0.187–0.678]).

Students who had poor self- efficacy status were 70.3% less to have a good practice of stress management behaviors than students with good self-efficacy status (AOR: 0.297, CI:[0.159–0.554]). Students who had poor social support were 70.5% less to have a good practice of stress management behaviors than students with good social support status (AOR: 0.295[0.155–0.560]) (Table  3 ).

The present study showed that the practice of stress management behaviors among regular undergraduate students was 367(58%) poor and 266(42%) good. The study indicated that sex, year of education, student’s monthly income, social support status, and perceived-self efficacy status were significant predictors of stress management behaviors of students.

The current study revealed that male students were more likely to have good practice of stress management behaviors than female students. This finding is contradictory with previous studies conducted in the USA [ 13 , 25 ], where female students were showed better practice of stress management behaviors than male students. This difference might be due to socioeconomic and measurement tool differences.

The current study indicated that students with monthly income less than 300 ETB were less likely to have good practice of stress management behaviors than students with monthly income greater than or equal to 300 ETB. This is congruent with the recently published book which argues a better understanding of our relationship with money (income). The book said “the people with more money are, on average, happier than the people with less money. They have less to worry about because they are not worried about where they are going to get food or money for their accommodation or whatever the following week, and this has a positive effect on their health” [ 26 ].

The present study found that first-year students were less likely to have good practice of stress management behaviors than senior students. This finding is similar to previous findings from Japan [ 27 ], China [ 28 ] and Ghana [ 29 ]. This might be because freshman students may encounter a multitude of stressors, some of which they may have dealt with in high school and others that may be a new experience for them. With so many new experiences, responsibilities, social settings, and demands on their time. As a first-time, incoming college freshman, experiencing life as an adult and acclimating to the numerous and varied types of demands placed on them can be a truly overwhelming experience. It can also lead to unhealthy amounts of stress. A report by the Anxiety and Depression Association of America found that 80% of freshman students frequently or sometimes experience daily stress [ 30 ].

The current study showed that students with poor self-efficacy status were less likely to have good practice of stress management behaviors. This is congruent with the previous study that has demonstrated quite convincingly that possessing high levels of self-efficacy acts to decrease people’s potential for experiencing negative stress feelings by increasing their sense of being in control of the situations they encounter [ 14 ]. More ever this study found that students with poor social support were less likely to have a good practice of stress management behaviors. This finding is similar to previous studies that found good social support, whether from a trusted group or valued individual, has shown to reduce the psychological and physiological consequences of stress, and may enhance immune function [ 15 , 16 , 17 ].

Ethics approval and consent to participate

Ethical clearance and approval obtained from the institutional review board of Mekelle University. Moreover, before conducting the study, the purpose and objective of the study were described to the study participants and written informed consent was obtained. The study participants were informed as they have full right to discontinue during the interview. Subject confidentiality and any special data security requirements were maintained and assured by not exposing the patient’s name and information.

Limitation of the study

There is limited literature regarding stress management behaviors and associated factors. There is no similar study done in Ethiopia previously. More ever, using a self-administered questionnaire, the respondents might not pay full attention to it/read it properly.

This study found that the majority of the students had poor practice of stress management behaviors. The study also found that sex, year of education, student’s monthly income, social support status, and perceived-self efficacy status were significant predictors of stress management behaviors of the students.

Availability of data and materials

The datasets used during the current study is available from the corresponding author on reasonable request.

Abbreviations

Adjusted Odd Ratio

College of Business& Economics

College of health sciences

Confidence interval

College of natural and computational sciences

Crud odds ratio

Ethiopian birr

Master of Sciences

United States of America

United kingdom

Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301–14.

Article   CAS   Google Scholar  

Lagraauw HM, Kuiper J, Bot I. Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun. 2015;50:18–30.

Article   Google Scholar  

Greenberg J. Comprehensive stress management: McGraw-Hill Education; 2012.

Walker SN, Sechrist KR, Pender NJ. The health-promoting lifestyle profile: development and psychometric characteristics. Nurs Res. 1987.

Buchanan JL. Prevention of depression in the college student population: a review of the literature. Arch Psychiatric Nurs. 2012;26(1):21–42.

Kisch J, Leino EV, Silverman MM. Aspects of suicidal behavior, depression, and treatment in college students: results from the spring 2000 National College Health Assessment Survey. Suicide Life Threat Behav. 2005;35(1):3–13.

Crandall KJ, Steward K, Warf TM. A mobile app for reducing perceived stress in college students. Am J Health Stud. 2016;31(2):68–73.

Google Scholar  

Gan WY, Nasir MM, Zalilah MS, Hazizi AS. Disordered eating behaviors, depression, anxiety and stress among Malaysian university students. Coll Stud J. 2011;45(2):296–31.

Wong JG, Cheung EP, Chan KK, Ma KK, Wa TS. Web-based survey of depression, anxiety and stress in first-year tertiary education students in Hong Kong. Aust N Z J Psychiatry. 2006;40(9):777–82.

Abu-Ghazaleh SB, Rajab LD, Sonbol HN. Psychological stress among dental students at the University of Jordan. J Dent Educ. 2011;75(8):1107–14.

PubMed   Google Scholar  

McDermott BM, Cobham VE, Berry H, Stallman HM. Vulnerability factors for disaster-induced child post-traumatic stress disorder: the case for low family resilience and previous mental illness. Austr New Zeal J Psychiatry. 2010;44(4):384–9.

Dachew BA, Bisetegn TA, Gebremariam RB. Prevalence of mental distress and associated factors among undergraduate students of the University of Gondar, Northwest Ethiopia: a cross-sectional institutional based study. PLoS One. 2015;10(3):e0119464.

Matheny KB, Ashby JS, Cupp P. Gender differences in stress, coping, and illness among college students. J Individ Psychol. 2005;1:61(4).

Mills H, Reiss N, Dombeck M. Self-efficacy and the perception of control in stress reduction: Mental Help; 2008.

Morisky DE, DeMuth NM, Field-Fass M, Green LW, Levine DM. Evaluation of family health education to build social support for long-term control of high blood pressure. Health Educ Q. 1985;12(1):35–50.

Yilmaz FT, Sabancıogullari S, Aldemir K, Kumsar AK. Does social support affect development of cognitive dysfunction in individuals with diabetes mellitus? Saudi Med J. 2015;36(12):1425.

Barrera M Jr, Toobert DJ, Angell KL, Glasgow RE, MacKinnon DP. Social support and social-ecological resources as mediators of lifestyle intervention effects for type 2 diabetes. J Health Psychol. 2006;11(3):483–95.

Lau RR, Hartman KA, Ware JE. Health as a value: methodological and theoretical considerations. Health Psychol. 1986;5(1):25.

Zhang JX, Schwarzer R. Measuring optimistic self-beliefs: A Chinese adaptation of the General Self-Efficacy Scale. Psychologia. 1995.

Peker K, Bermek G. Predictors of health-promoting behaviors among freshman dental students at Istanbul University. J Dent Educ. 2011;75(3):413–20.

Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess. 1988;52(1):30–41.

Eker D, Arkar H, Yaldiz H. Generality of support sources and psychometric properties of a scale of perceived social support in Turkey. Soc Psychiatry Psychiatr Epidemiol. 2000;35(5):228–33.

Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;1:385–96.

Örücü MÇ, Demir A. Psychometric evaluation of perceived stress scale for Turkish university students. Stress Health. 2009;25(1):103–9.

Crockett LJ, Iturbide MI, Torres Stone RA, McGinley M, Raffaelli M, Carlo G. Acculturative stress, social support, and coping: relations to psychological adjustment among Mexican American college students. Cult Divers Ethn Minor Psychol. 2007;13(4):347.

Thaler RH, Sunstein CR. Nudge: Improving decisions about health, wealth, and happiness: Penguin; 2009..

Wei CN, Harada K, Ueda K, Fukumoto K, Minamoto K, Ueda A. Assessment of health-promoting lifestyle profile in Japanese university students. Environ Health Prev Med. 2012;17(3):222.

Wang D, Ou CQ, Chen MY, Duan N. Health-promoting lifestyles of university students in mainland China. BMC Public Health. 2009;9(1):379.

Amponsah M, Owolabi HO. Perceived stress levels of fresh university students in Ghana: a case study. J Educ Soc Behav Sci. 2011;27:153–69.

Beiter R, Nash R, McCrady M, Rhoades D, Linscom BM, Clarahan M, Sammut S. The prevalence and correlates of depression, anxiety, and stress in a sample of college students. J Affect Disord. 2015;173:90–6.

Download references

Acknowledgments

Author thanks Mekelle University, data collectors, supervisors and study participants.

Not applicable.

Author information

Authors and affiliations.

School of nursing, Mekelle University, Tigray, Ethiopia

Gebrezabher Niguse Hailu

You can also search for this author in PubMed   Google Scholar

Contributions

Make an interpretation of the data, make the analysis of the data, prepares and submits the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Gebrezabher Niguse Hailu .

Ethics declarations

Ethical clearance and approval obtained from the institutional review board of Mekelle University. Moreover, before conducting the study, the purpose and objective of the study were described to the study participants and written informed consent was obtained. The study participants were informed as they have full right to discontinue. Subject confidentiality and any special data security requirements were maintained and assured by not exposing patients’ names and information. Besides, the questionnaires and all other information were stored on a personal computer which is protected with a password.

Consent for publication

Not applicable as there is no image or other confidentiality related issues.

Competing interests

The author declares that he/she has no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hailu, G.N. Practice of stress management behaviors and associated factors among undergraduate students of Mekelle University, Ethiopia: a cross-sectional study. BMC Psychiatry 20 , 162 (2020). https://doi.org/10.1186/s12888-020-02574-4

Download citation

Received : 04 October 2019

Accepted : 30 March 2020

Published : 15 April 2020

DOI : https://doi.org/10.1186/s12888-020-02574-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Stress management
  • University students

BMC Psychiatry

ISSN: 1471-244X

stress management research paper pdf

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

The impact of stress on body function: A review

Habib yaribeygi.

1 Neurosciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Yunes Panahi

2 Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

Hedayat Sahraei

Thomas p. johnston.

3 Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA

Amirhossein Sahebkar

4 Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Any intrinsic or extrinsic stimulus that evokes a biological response is known as stress. The compensatory responses to these stresses are known as stress responses. Based on the type, timing and severity of the applied stimulus, stress can exert various actions on the body ranging from alterations in homeostasis to life-threatening effects and death. In many cases, the pathophysiological complications of disease arise from stress and the subjects exposed to stress, e.g. those that work or live in stressful environments, have a higher likelihood of many disorders. Stress can be either a triggering or aggravating factor for many diseases and pathological conditions. In this study, we have reviewed some of the major effects of stress on the primary physiological systems of humans.

Abbreviations

ACTH: Adrenocorticotropic hormone

CNS: Central nervous system

CRH: Corticotropin releasing hormone

GI: Gastrointestinal

LTP: Long-term potentiation

NMDA : N-methyl-D-aspartate

VTA: Ventral tegmental area

Stress and the Brain Function Complications

For a long time, researchers suggested that hormones have receptors just in the peripheral tissues and do not gain access to the central nervous system (CNS) (Lupien and Lepage, 2001[ 63 ]). However, observations have demonstrated the effect of anti-inflammatory drugs (which are considered synthetic hormones) on behavioral and cognitive disorders and the phenomenon called “Steroid psychosis” (Clark et al., 1952[ 16 ]). In the early sixties, neuropeptides were recognized as compounds devoid of effects on the peripheral endocrine system. However, it was determined that hormones are able to elicit biological effects on different parts of the CNS and play an important role in behavior and cognition (De Kloet, 2000[ 22 ]). In 1968, McEven suggested for the first time that the brain of rodents is capable of responding to glucocorticoid (as one of the operators in the stress cascade). This hypothesis that stress can cause functional changes in the CNS was then accepted (McEwen et al., 1968[ 74 ]). From that time on, two types of corticotropic receptors (glucocorticosteroids and mineralocorticoids) were recognized (de Kloet et al., 1999[ 23 ]). It was determined that the affinity of glucocorticosteroid receptors to cortisol and corticosterone was about one tenth of that of mineralocorticoids (de Kloet et al., 1999[ 23 ]). The hippocampus area has both types of receptors, while other points of the brain have only glucocorticosteroid receptors (de Kloet et al., 1999[ 23 ]).

The effects of stress on the nervous system have been investigated for 50 years (Thierry et al., 1968[ 115 ]). Some studies have shown that stress has many effects on the human nervous system and can cause structural changes in different parts of the brain (Lupien et al., 2009[ 65 ]). Chronic stress can lead to atrophy of the brain mass and decrease its weight (Sarahian et al., 2014[ 100 ]). These structural changes bring about differences in the response to stress, cognition and memory (Lupien et al., 2009[ 65 ]). Of course, the amount and intensity of the changes are different according to the stress level and the duration of stress (Lupien et al., 2009[ 65 ]). However, it is now obvious that stress can cause structural changes in the brain with long-term effects on the nervous system (Reznikov et al., 2007[ 89 ]). Thus, it is highly essential to investigate the effects of stress on different aspects of the nervous system (Table 1 (Tab. 1) ; References in Table 1: Lupien et al., 2001[ 63 ]; Woolley et al., 1990[ 122 ]; Sapolsky et al., 1990[ 99 ]; Gould et al., 1998[ 35 ]; Bremner, 1999[ 10 ]; Seeman et al., 1997[ 108 ]; Luine et al., 1994[ 62 ]; Li et al., 2008[ 60 ]; Scholey et al., 2014[ 101 ]; Borcel et al., 2008[ 9 ]; Lupien et al., 2002[ 66 ]).

An external file that holds a picture, illustration, etc.
Object name is EXCLI-16-1057-t-001.jpg

Stress and Memory

Memory is one of the important functional aspects of the CNS and it is categorized as sensory, short term, and long-term. Short term memory is dependent on the function of the frontal and parietal lobes, while long-term memory depends on the function of large areas of the brain (Wood et al., 2000[ 121 ]). However, total function of memory and the conversion of short term memory to long-term memory are dependent on the hippocampus; an area of the brain that has the highest density of glucocorticosteroid receptors and also represents the highest level of response to stress (Scoville and Milner, 1957[ 107 ]; Asalgoo et al., 2015[ 1 ]). Therefore, during the past several decades, the relationship between the hippocampus and stress have been hotly debated (Asalgoo et al., 2015[ 1 ]; Lupien and Lepage, 2001[ 63 ]). In 1968, it was proven that there were cortisol receptors in the hippocampus of rats (McEwen et al., 1968[ 74 ]). Later, in 1982, by using specific agonists of glucocorticosteroid and mineralocorticoid receptors, the existence of these two receptors in the brain and hippocampus area of rats was proven (Veldhuis et al., 1982[ 119 ]). It should also be noted that the amygdala is very important to assessing the emotional experiences of memory (Roozendaal et al., 2009[ 91 ]).

The results of past studies have demonstrated the effect of stress on the process of memory (Ghodrat et al., 2014[ 32 ]). Various studies have shown that stress can cause functional and structural changes in the hippocampus section of the brain (McEwen, 1999[ 72 ]). These structural changes include atrophy and neurogenesis disorders (Lupien and Lepage, 2001[ 63 ]). Also, chronic stress and, consequently, an increase in plasma cortisol, leads to a reduction in the number of dendritic branches (Woolley et al., 1990[ 122 ]) and the number of neurons (Sapolsky et al., 1990[ 99 ]), as well as structural changes in synaptic terminals (Sapolsky et al., 1990[ 99 ]) and decreased neurogenesis in the hippocampus tissue (Gould et al., 1998[ 35 ]). Glucocorticosteroids can induce these changes by either effecting the cellular metabolism of neurons (Lawrence and Sapolsky, 1994[ 58 ]), or increasing the sensitivity of hippocampus cells to stimulatory amino acids (Sapolsky and Pulsinelli, 1985[ 98 ]) and/or increasing the level of extracellular glutamate (Sapolsky and Pulsinelli, 1985[ 98 ]).

High concentrations of stress hormones can cause declarative memory disorders (Lupien and Lepage, 2001[ 63 ]). Animal studies have shown that stress can cause a reversible reduction in spatial memory as a result of atrophy of the hippocampus (Luine et al., 1994[ 62 ]). In fact, high plasma concentrations of glucocorticosteroids for extended periods of time can cause atrophy of the hippocampus leading to memory disorders (Issa et al., 1990[ 45 ]). Additionally, people with either Cushing's syndrome (with an increased secretion of glucocorticosteroids), or people who receive high dosages of exogenous synthetic anti-inflammatory drugs, are observed to have atrophy of the hippocampus and associated memory disorders (Ling et al., 1981[ 61 ]). MRI images taken from the brains of people with post-traumatic stress disorder (PTSD) have demonstrated a reduction in the volume of the hippocampus along with neurophysiologic effects such as a weak verbal memory (Bremner, 1999[ 10 ]). Several human studies have suggested that even common therapeutic doses of glucocorticosteroids and dexamethasone can cause problems with explicit memory (Keenan et al., 1995[ 49 ]; Kirschbaum et al., 1996[ 53 ]). Thus, there is an inverse relationship between the level of cortisol and memory (Ling et al., 1981[ 61 ]), such that increasing levels of plasma cortisol following prolonged stress leads to a reduction in memory (Kirschbaum et al., 1996[ 53 ]), which improves when the level of plasma cortisol decreases (Seeman et al., 1997[ 108 ]).

Stress also has negative effects on learning. Results from hippocampus-dependent loading data demonstrate that subjects are not as familiar with a new environment after having been exposed to a new environment (Bremner, 1999[ 10 ]). Moreover, adrenal steroids lead to alteration in long-term potentiation (LTP), which is an important process in memory formation (Bliss and Lømo, 1973[ 7 ]).

Two factors are involved in the memory process during stress. The first is noradrenaline, which creates emotional aspects of memories in the basolateral amygdala area (Joëls et al., 2011[ 47 ]). Secondly, this process is facilitated by corticosteroids. However, if the release of corticosteroids occurs a few hours earlier, it causes inhibition of the amygdala and corresponding behaviors (Joëls et al., 2011[ 47 ]). Thus, there is a mutual balance between these two hormones for creating a response in the memory process (Joëls et al., 2011[ 47 ]).

Stress does not always affect memory. Sometimes, under special conditions, stress can actually improve memory (McEwen and Lupien, 2002[ 71 ]). These conditions include non-familiarity, non-predictability, and life-threatening aspects of imposed stimulation. Under these specific conditions, stress can temporarily improve the function of the brain and, therefore, memory. In fact, it has been suggested that stress can sharpen memory in some situations (Schwabe et al., 2010[ 105 ]). For example, it has been shown that having to take a written examination can improve memory for a short period of time in examination participants. Interestingly, this condition is associated with a decrease in the level of cortisol in the saliva (Vedhara et al., 2000[ 118 ]). Other studies have shown that impending stress before learning occurs can also lead to either an increase in the power of memory (Domes et al., 2002[ 27 ]; Schwabe et al., 2008[ 102 ]), or decrease in the capacity for memory (Diamond et al., 2006[ 26 ]; Kirschbaum et al., 1996[ 53 ]). This paradox results from the type of imposed stress and either the degree of emotional connection to the stressful event (Payne et al., 2007[ 83 ]; Diamond et al., 2007[ 25 ]), or the period of time between the imposing stress and the process of learning (Diamond et al., 2007[ 25 ]).

The process of strengthening memory is usually reinforced after stress (Schwabe et al., 2012[ 103 ]). Various studies on animal and human models have shown that administration of either glucocorticosteroids, or stress shortly after learning has occurred facilitates memory (Schwabe et al., 2012[ 103 ]). Also, it has been shown that glucocorticosteroids (not mineralocorticoids) are necessary to improve learning and memory (Lupien et al., 2002[ 66 ]). However, the retrieval of events in memory after exposure to stress will be decreased (Schwabe et al., 2012[ 103 ]), which may result from the competition of updated data for storage in memory in a stressful state (de Kloet et al., 1999[ 23 ]). Some investigations have shown that either exposure to stress, or injection of glucocorticosteroids before a test to assess retention, decreases the power of memory in humans and rodents (Schwabe and Wolf, 2009[ 104 ]).

In summary, it has been concluded that the effect of stress on memory is highly dependent on the time of exposure to the stressful stimulus and, in terms of the timing of the imposed stress, memory can be either better or worse (Schwabe et al., 2012[ 103 ]). Moreover, recent studies have shown that using a specific-timed schedule of exposure to stress not only affects hippocampus-dependent memory, but also striatum-dependent memory, which highlights the role of timing of the imposed stressful stimulus (Schwabe et al., 2010[ 105 ]).

Stress, Cognition and Learning

Cognition is another important feature of brain function. Cognition means reception and perception of perceived stimuli and its interpretation, which includes learning, decision making, attention, and judgment (Sandi, 2013[ 95 ]). Stress has many effects on cognition that depend on its intensity, duration, origin, and magnitude (Sandi, 2013[ 95 ]). Similar to memory, cognition is mainly formed in the hippocampus, amygdala, and temporal lobe (McEwen and Sapolsky, 1995[ 73 ]). The net effect of stress on cognition is a reduction in cognition and thus, it is said that any behavioral steps undertaken to reduce stress leads to increase in cognition (Scholey et al., 2014[ 101 ]). In fact, stress activates some physiological systems, such as the autonomic nervous system, central neurotransmitter and neuropeptide system, and the hypothalamus-pituitary-adrenal axis, which have direct effects on neural circuits in the brain involved with data processing (Sandi, 2013[ 95 ]). Activation of stress results in the production and release of glucocorticosteroids. Because of the lipophilic properties of glucocorticosteroids, they can diffuse through the blood-brain barrier and exert long-term effects on processing and cognition (Sandi, 2013[ 95 ]).

It appears that being exposed to stress can cause pathophysiologic changes in the brain, and these changes can be manifested as behavioral, cognitive, and mood disorders (Li et al., 2008[ 60 ]). In fact, studies have shown that chronic stress can cause complications such as increased IL-6 and plasma cortisol, but decreased amounts of cAMP responsive element binding protein and brain-derived neurotrophic factor (BDNF), which is very similar to what is observed in people with depression and mood disorders that exhibit a wide range of cognitive problems (Song et al., 2006[ 114 ]). Additionally, the increased concentrations of inflammatory factors, like interleukins and TNF-α (which play an important role in creating cognitive disorders), proves a physiologic relationship between stress and mood-based cognitive disorders (Solerte et al., 2000[ 113 ]; Marsland et al., 2006[ 68 ]; Li et al., 2008[ 60 ]). Studies on animals suggest that cognitive disorders resulting from stress are created due to neuroendocrine and neuroamine factors and neurodegenerative processes (Li et al., 2008[ 60 ]). However, it should be noted that depression may not always be due to the over activation of the physiological-based stress response (Osanloo et al., 2016[ 81 ]).

Cognitive disorders following exposure to stress have been reported in past studies (Lupien and McEwen, 1997[ 64 ]). Stress has effects on cognition both acutely (through catecholamines) and chronically (through glucocorticosteroids) (McEwen and Sapolsky, 1995[ 73 ]). Acute effects are mainly caused by beta-adrenergic effects, while chronic effects are induced in a long-term manner by changes in gene expression mediated by steroids (McEwen and Sapolsky, 1995[ 73 ]). In general, many mechanisms modulate the effects of stress on cognition (McEwen and Sapolsky, 1995[ 73 ]; Mendl, 1999[ 75 ]). For instance, adrenal steroids affect the function of the hippocampus during cognition and memory retrieval in a biphasic manner (McEwen and Sapolsky, 1995[ 73 ]). In chronic stress, these steroids can destroy neurons with other stimulatory neurotransmitters (Sandi, 2013[ 95 ]). Exposure to stress can also cause disorders in hippocampus-related cognition; specifically, spatial memory (Borcel et al., 2008[ 9 ]; Sandi et al., 2003[ 96 ]). Additionally, stress can halt or decrease the genesis of neurons in the dentate gyrus area of the hippocampus (this area is one of the limited brain areas in which neurogenesis occurs in adults) (Gould and Tanapat, 1999[ 34 ]; Köhler et al., 2010[ 54 ]). Although age is a factor known to affect cognition, studies on animals have demonstrated that young rats exposed to high doses of adrenal steroids show the same level of decline in their cognition as older adult animals with normal plasma concentrations of glucocorticoids (Landfield et al., 1978[ 57 ]). Also, a decrease in the secretion of glucocorticosteroids causes preservation of spatial memory in adults and has also been shown to have neuroprotective effects (Montaron et al., 2006[ 78 ]). Other studies have shown that stress (or the injection of adrenal steroids) results in varied effects on cognition. For instance, injection of hydrocortisone at the time of its maximum plasma concentration (in the afternoon) leads to a decrease in reaction time and improves cognition and memory (Lupien et al., 2002[ 66 ]).

In summary, the adverse effects of stress on cognition are diverse and depend on the type, timing, intensity, and duration (Sandi, 2013[ 95 ]). Generally, it is believed that mild stress facilitates an improvement in cognitive function, especially in the case of virtual or verbal memory. However, if the intensity of stress passes beyond a predetermined threshold (which is different in each individual), it causes cognitive disorders, especially in memory and judgment. The disruption to memory and judgment is due to the effects of stress on the hippocampus and prefrontal cortex (Sandi, 2013[ 95 ]). Of course, it must be realized that factors like age and gender may also play a role in some cognitive disorders (Sandi, 2013[ 95 ]). Importantly, it should be emphasized that different people may exhibit varied responses in cognition when exposed to the very same stressful stimulus (Hatef et al., 2015[ 39 ]).

Stress and Immune System Functions

The relationship between stress and the immune system has been considered for decades (Khansari et al., 1990[ 50 ]; Dantzer and Kelley, 1989[ 21 ]). The prevailing attitude between the association of stress and immune system response has been that people under stress are more likely to have an impaired immune system and, as a result, suffer from more frequent illness (Khansari et al., 1990[ 50 ]). Also, old anecdotes describing resistance of some people to severe disease using the power of the mind and their thought processes, has promoted this attitude (Khansari et al., 1990[ 50 ]). In about 200 AC, Aelius Galenus (Galen of Pergamon) declared that melancholic women (who have high levels of stress and, thus, impaired immune function) are more likely to have cancer than women who were more positive and exposed to less stress (Reiche et al., 2004[ 88 ]). This may be the first recorded case about the relationship between the immune system and stress. In an old study in the early 1920's, researchers found that the activity of phagocytes in tuberculosis decreased when emotional stress was induced. In fact, it was also suggested that living with stress increases the risk of tuberculosis by suppressing the immune system (Ishigami, 1919[ 44 ]). Following this study, other researchers suggested that the probability of disease appearance increases following a sudden, major, and extremely stressful life style change (Holmes and Rahe, 1967[ 41 ]; Calabrese et al., 1987[ 12 ]).

Over the past several decades, there have been many studies investigating the role of stress on immune system function (Dantzer and Kelley, 1989[ 21 ]; Segerstrom and Miller, 2004[ 109 ]). These studies have shown that stress mediators can pass through the blood-brain barrier and exert their effects on the immune system (Khansari et al., 1990[ 50 ]). Thus, the effect of stress on the immune system is now an accepted relationship or association.

Stress can affect the function of the immune system by modulating processes in the CNS and neuroendocrine system (Khansari et al., 1990[ 50 ]; Kiecolt-Glaser and Glaser, 1991[ 51 ]). Following stress, some neuroendocrine and neural responses result in the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and other stress mediators (Carrasco and Van de Kar, 2003[ 13 ]). However, evidence suggests that the lymphatic system, which is a part of the immune system, also plays a role in releasing these mediators (Khansari et al., 1990[ 50 ]). For instance, thymus peptides, such as thymopentine, thymopoietin, and thymosin fraction-5, cause an increase in ACTH production (Goya et al., 1993[ 36 ]). Additionally, the existence of CRH in thymus has been proven (Redei, 1992[ 87 ]). It has also been proven that interleukin-1 released from phagocytes has a role in ACTH secretion (Berkenbosch et al., 1987[ 4 ]). On the other hand, natural or synthetic glucocorticosteroids (which are the final stress operators) are known as anti-inflammatory drugs and immune suppressants and their role in the inhibition of lymphocytes and macrophages has been demonstrated as well (Elenkov et al., 1999[ 28 ]; Reiche et al., 2004[ 88 ]). Moreover, their role in inhibiting the production of cytokines and other immune mediators and decreasing their effect on target cells during exposure to stress has also been determined (Reiche et al., 2004[ 88 ]).

In addition to adrenal steroids, other hormones are affected during stress. For example, the secretion of growth hormone will be halted during severe stress. A study showed that long-term administration of CRH into the brain ventricles leads to a cessation in the release of growth hormone (Rivier and Vale, 1985[ 90 ]). Stress also causes the release of opioid peptides to be changed during the time period over which the person is exposed to stress (McCarthy et al., 2001[ 70 ]). In fact, stress modifies the secretion of hormones that play a critical role in the function of the immune system (Khansari et al., 1990[ 50 ]). To date, it has been shown that various receptors for a variety of hormones involved in immune system function are adversely affected by stress. For example, ACTH, vasoactive intestinal peptide (VIP), substance P, growth hormone, prolactin, and steroids all have receptors in various tissues of the immune system and can modulate its function (De la Fuente et al., 1996[ 24 ]; Gala, 1991[ 30 ]; Mantyh, 1991[ 67 ]). In addition, active immune cells are also able to secrete several hormones; thus, some researchers believe that these hormones, as mediators of immune system, play a significant role in balancing its function (Blalock et al., 1985[ 6 ]).

Severe stress can lead to malignancy by suppressing the immune system (Reiche et al., 2004[ 88 ]). In fact, stress can decrease the activity of cytotoxic T lymphocytes and natural killer cells and lead to growth of malignant cells, genetic instability, and tumor expansion (Reiche et al., 2004[ 88 ]). Studies have shown that the plasma concentration of norepinephrine, which increases after the induction stress, has an inverse relationship with the immune function of phagocytes and lymphocytes (Reiche et al., 2004[ 88 ]). Lastly, catecholamines and opioids that are released following stress have immune-suppressing properties (Reiche et al., 2004[ 88 ]).

Stress and the Function of the Cardiovascular System

The existence of a positive association between stress and cardiovascular disease has been verified (Rozanski et al., 1999[ 93 ]). Stress, whether acute or chronic, has a deleterious effect on the function of the cardiovascular system (Rozanski et al., 1999[ 93 ]; Kario et al., 2003[ 48 ]; Herd, 1991[ 40 ]). The effects of stress on the cardiovascular system are not only stimulatory, but also inhibitory in nature (Engler and Engler, 1995[ 29 ]). It can be postulated that stress causes autonomic nervous system activation and indirectly affects the function of the cardiovascular system (Lazarus et al., 1963[ 59 ]; Vrijkotte et al., 2000[ 120 ]). If these effects occur upon activation of the sympathetic nervous system, then it mainly results in an increase in heart rate, strength of contraction, vasodilation in the arteries of skeletal muscles, a narrowing of the veins, contraction of the arteries in the spleen and kidneys, and decreased sodium excretion by the kidneys (Herd, 1991[ 40 ]). Sometimes, stress activates the parasympathetic nervous system (Pagani et al., 1991[ 82 ]). Specifically, if it leads to stimulation of the limbic system, it results in a decrease, or even a total stopping of the heart-beat, decreased contractility, reduction in the guidance of impulses by the heart stimulus-transmission network, peripheral vasodilatation, and a decline in blood pressure (Cohen et al., 2000[ 17 ]). Finally, stress can modulate vascular endothelial cell function and increase the risk of thrombosis and ischemia, as well as increase platelet aggregation (Rozanski et al., 1999[ 93 ]).

The initial effect of stress on heart function is usually on the heart rate (Vrijkotte et al., 2000[ 120 ]). Depending upon the direction of the shift in the sympatho-vagal response, the heart beat will either increase or decrease (Hall et al., 2004[ 38 ]). The next significant effect of stress on cardiovascular function is blood pressure (Laitinen et al., 1999[ 56 ]). Stress can stimulate the autonomic sympathetic nervous system to increase vasoconstriction, which can mediate an increase in blood pressure, an increase in blood lipids, disorders in blood clotting, vascular changes, atherogenesis; all, of which, can cause cardiac arrhythmias and subsequent myocardial infarction (Rozanski et al., 1999[ 93 ]; Vrijkotte et al., 2000[ 120 ]; Sgoifo et al., 1998[ 111 ]). These effects from stress are observed clinically with atherosclerosis and leads to an increase in coronary vasoconstriction (Rozanski et al., 1999[ 93 ]). Of course, there are individual differences in terms of the level of autonomic-based responses due to stress, which depends on the personal characteristics of a given individual (Rozanski et al., 1999[ 93 ]). Thus, training programs for stress management are aimed at reducing the consequences of stress and death resulting from heart disease (Engler and Engler, 1995[ 29 ]). In addition, there are gender-dependent differences in the cardiovascular response to stress and, accordingly, it has been estimated that women begin to exhibit heart disease ten years later that men, which has been attributed to the protective effects of the estrogen hormone (Rozanski et al., 1999[ 93 ]).

Studies have shown that psychological stress can cause alpha-adrenergic stimulation and, consequently, increase heart rate and oxygen demand (Rozanski et al., 1998[ 92 ], 1999[ 93 ]; Jiang et al., 1996[ 46 ]). As a result, coronary vasoconstriction is enhanced, which may increase the risk of myocardial infarction (Yeung et al., 1991[ 124 ]; Boltwood et al., 1993[ 8 ]; Dakak et al., 1995[ 20 ]). Several studies have demonstrated that psychological stress decreases the microcirculation in the coronary arteries by an endothelium-dependent mechanism and increases the risk of myocardial infarction (Dakak et al., 1995[ 20 ]). On the other hand, mental stress indirectly leads to potential engagement in risky behaviors for the heart, such as smoking, and directly leads to stimulation of the neuroendocrine system as part of the autonomic nervous system (Hornstein, 2004[ 43 ]). It has been suggested that severe mental stress can result in sudden death (Pignalberi et al., 2002[ 84 ]). Generally, stress-mediated risky behaviors that impact cardiovascular health can be summarized into five categories: an increase in the stimulation of the sympathetic nervous system, initiation and progression of myocardial ischemia, development of cardiac arrhythmias, stimulation of platelet aggregation, and endothelial dysfunction (Wu, 2001[ 123 ]).

Stress and Gastrointestinal Complications

The effects of stress on nutrition and the gastrointestinal (GI) system can be summarized with two aspects of GI function.

First, stress can affect appetite (Bagheri Nikoo et al., 2014[ 2 ]; Halataei et al., 2011[ 37 ]; Ranjbaran et al., 2013[ 86 ]). This effect is related to involvement of either the ventral tegmental area (VTA), or the amygdala via N-methyl-D-aspartate (NMDA) glutamate receptors (Nasihatkon et al., 2014[ 80 ]; Sadeghi et al., 2015[ 94 ]). However, it should also be noted that nutrition patterns have effects on the response to stress (Ghanbari et al., 2015[ 31 ]), and this suggests a bilateral interaction between nutrition and stress.

Second, stress adversely affects the normal function of GI tract. There are many studies concerning the effect of stress on the function of the GI system (Söderholm and Perdue, 2001[ 112 ]; Collins, 2001[ 18 ]). For instance, studies have shown that stress affects the absorption process, intestinal permeability, mucus and stomach acid secretion, function of ion channels, and GI inflammation (Collins, 2001[ 18 ]; Nabavizadeh et al., 2011[ 79 ]). Stress also increases the response of the GI system to inflammation and may reactivate previous inflammation and accelerate the inflammation process by secretion of mediators such as substance P (Collins, 2001[ 18 ]). As a result, there is an increase in the permeability of cells and recruitment of T lymphocytes. Lymphocyte aggregation leads to the production of inflammatory markers, activates key pathways in the hypothalamus, and results in negative feedback due to CRH secretion, which ultimately results in the appearance of GI inflammatory diseases (Collins, 2001[ 18 ]). This process can reactivate previous silent colitis (Million et al., 1999[ 76 ]; Qiu et al., 1999[ 85 ]). Mast cells play a crucial role in stress-induced effects on the GI system, because they cause neurotransmitters and other chemical factors to be released that affect the function of the GI system (Konturek et al., 2011[ 55 ]).

Stress can also alter the functional physiology of the intestine (Kiliaan et al., 1998[ 52 ]). Many inflammatory diseases, such as Crohn's disease and other ulcerative-based diseases of the GI tract, are associated with stress (Hommes et al., 2002[ 42 ]). It has been suggested that even childhood stress can lead to these diseases in adulthood (Schwartz and Schwartz, 1983[ 106 ]). Irritable bowel syndrome, which is a disease with an inflammatory origin, is highly related to stress (Gonsalkorale et al., 2003[ 33 ]). Studies on various animals suggest the existence of inflammatory GI diseases following induction of severe stress (Qiu et al., 1999[ 85 ]; Collins et al., 1996[ 19 ]). Additionally, pharmacological interventions, in an attempt to decrease the response of CRH to stress, have been shown to result in an increase in GI diseases in rats (Million et al., 1999[ 76 ]).

Altering the permeability of the mucosal membrane by perturbing the functions of mucosal mast cells may be another way that stress causes its effects on the GI system, since this is a normal process by which harmful and toxic substances are removed from the intestinal lumen (Söderholm and Perdue, 2001[ 112 ]). Also, stress can both decrease the removal of water from the lumen, as well as induce sodium and chloride secretion into the lumen. This most likely occurs by increasing the activity of the parasympathetic nervous system (Barclay and Turnberg, 1987[ 3 ]). Moreover, physical stress, such as trauma or surgery, can increase luminal permeability (Söderholm and Perdue, 2001[ 112 ]) (Table 2 (Tab. 2) ; References in Table 2: Halataei et al., 2011[ 37 ]; Ranjbaran et al., 2013[ 86 ]; Mönnikes et al., 2001[ 77 ]; Collins, 2001[ 18 ]; Nabavizadeh et al., 2011[ 79 ]; Barclay and Turnberg, 1987[ 3 ]; Million et al., 1999[ 76 ]; Gonsalkorale et al., 2003[ 33 ]).

An external file that holds a picture, illustration, etc.
Object name is EXCLI-16-1057-t-002.jpg

Stress also affects movement of the GI tract. In this way, it prevents stomach emptying and accelerates colonic motility (Mönnikes et al., 2001[ 77 ]). In the case of irritable bowel syndrome, stress increases the movement (contractility and motility) of the large intestine (Mönnikes et al., 2001[ 77 ]). Previous studies have revealed that CRH increases movement in the terminal sections of the GI tract and decreases the movements in the proximal sections of the GI tract (Mönnikes et al., 2001[ 77 ]). A delay in stomach emptying is likely accomplished through CRH-2 receptors, while type 1 receptors affect the colon (Mönnikes et al., 2001[ 77 ]). The effects produced by CRH are so prominent that CRH is now considered an ideal candidate for the treatment of irritable bowel syndrome (Martinez and Taché, 2006[ 69 ]). When serotonin is released in response to stress (Chaouloff, 2000[ 14 ]), it leads to an increase in the motility of the colon by stimulating 5HT-3 receptors (Mönnikes et al., 2001[ 77 ]). Moreover, it has also been suggested that stress, especially mental and emotional types of stress, increase visceral sensitivity and activate mucosal mast cells (Mönnikes et al., 2001[ 77 ]). Stimulation of the CNS by stress has a direct effect on GI-specific nervous system ( i.e. , the myenteric system or plexus) and causes the above mentioned changes in the movements of the GI tract (Bhatia and Tandon, 2005[ 5 ]). In fact, stress has a direct effect on the brain-bowel axis (Konturek et al., 2011[ 55 ]). Various clinical studies have suggested a direct effect of stress on irritable bowel syndrome, intestinal inflammation, and peptic ulcers (Konturek et al., 2011[ 55 ]).

In conclusion, the effects of stress on the GI system can be classified into six different actions: GI tract movement disorders, increased visceral irritability, altered rate and extent of various GI secretions, modified permeability of the intestinal barrier, negative effects on blood flow to the GI tract, and increased intestinal bacteria counts (Konturek et al., 2011[ 55 ]).

Stress and the Endocrine System

There is a broad and mutual relationship between stress and the endocrine system. On one hand, stress has many subtle and complex effects on the activity of the endocrine system (Sapolsky, 2002[ 97 ]; Charmandari et al., 2005[ 15 ]), while on the other hand, the endocrine system has many effects on the response to stress (Ulrich-Lai and Herman, 2009[ 117 ]; Selye, 1956[ 110 ]). Stress can either activate, or change the activity of, many endocrine processes associated with the hypothalamus, pituitary and adrenal glands, the adrenergic system, gonads, thyroid, and the pancreas (Tilbrook et al., 2000[ 116 ]; Brown-Grant et al., 1954[ 11 ]; Thierry et al., 1968[ 115 ]; Lupien and McEwen, 1997[ 64 ]). In fact, it has been suggested that it is impossible to separate the response to stress from the functions of the endocrine system. This premise has been advanced due to the fact that even a minimal amount of stress can activate the hypothalamic-pituitary-adrenal axis, which itself is intricately involved with the activation of several different hormone secreting systems (Sapolsky, 2002[ 97 ]). In different locations throughout this article, we have already discussed the effects of stress on hormones and various endocrine factors and, thus, they will not be further addressed.

Altogether, stress may induce both beneficial and harmful effects. The beneficial effects of stress involve preserving homeostasis of cells/species, which leads to continued survival. However, in many cases, the harmful effects of stress may receive more attention or recognition by an individual due to their role in various pathological conditions and diseases. As has been discussed in this review, various factors, for example, hormones, neuroendocrine mediators, peptides, and neurotransmitters are involved in the body's response to stress. Many disorders originate from stress, especially if the stress is severe and prolonged. The medical community needs to have a greater appreciation for the significant role that stress may play in various diseases and then treat the patient accordingly using both pharmacological (medications and/or nutraceuticals) and non-pharmacological (change in lifestyle, daily exercise, healthy nutrition, and stress reduction programs) therapeutic interventions. Important for the physician providing treatment for stress is the fact that all individuals vary in their response to stress, so a particular treatment strategy or intervention appropriate for one patient may not be suitable or optimal for a different patient.

Yunes Panahi and Amirhossein Sahebkar (Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; Tel: 985118002288, Fax: 985118002287, E-mail: [email protected], [email protected]) contributed equally as corresponding authors.

Conflict of interest

The authors declare that have no conflict of interest in this study.

Acknowledgement

The authors would like to thank the "Neurosciences Research Center of Baqiyatallah University of Medical Sciences" and the “Clinical Research Development Center of Baqiyatallah (a.s.) Hospital” for providing technical supports.

IMAGES

  1. (PDF) Stress Management In Research Projects

    stress management research paper pdf

  2. A Study On Stress Management Among College Students

    stress management research paper pdf

  3. (PDF) Stress Management Intervention Assessment

    stress management research paper pdf

  4. (PDF) Measurement and Methodological Issues in Work Stress Research

    stress management research paper pdf

  5. (PDF) Strategies for Coping with Academic Stress, Stress Management

    stress management research paper pdf

  6. (PDF) Causes of Stress and Stress Management

    stress management research paper pdf

VIDEO

  1. What are the different stress management techniques? Dr. C R Satish Kumar- Manipal Hospital

  2. Stress: happens

  3. Decathlon: Supply Chain Management

  4. Introduction to Stress Management

  5. Stress Management for Wellness

  6. DB Management Research Paper #1

COMMENTS

  1. (PDF) Stress Management

    PDF | On Jan 1, 2012, Joshua J Broman-Fulks and others published Stress Management | Find, read and cite all the research you need on ResearchGate

  2. PDF Doing What Matters in Times of Stress

    Doing What Matters in Times of Stress: An Illustrated Guide is a component of a forthcoming WHO stress management course, Self-Help Plus (SH+),1-2 initiated by Mark van Ommeren (Mental Health Unit, Department of Mental Health and Substance Use, WHO) as part of the WHO Series on Low-Intensity Psychological Interventions. Content creation

  3. How to Relax in Stressful Situations: A Smart Stress Reduction System

    This paper describes emotion regulation in the context of stress management and how yoga and mindfulness can be used for regulating emotions . Methods of detecting stress and analyzing context based on physical activity are described ( Section 3 ) and data are presented related to our method for stress level detection with the use of smart ...

  4. [PDF] Stress management techniques: evidence-based procedures that

    Stress coping methods are the cognitive, behavioral and psychological efforts to deal with stress, all evidence-based techniques, easy to learn and practice, with good results in individuals with good health or with a disease. Purpose: According to the World Health Organization, stress is a significant problem of our times and affects both physical as well as the mental health of people ...

  5. International Journal of Stress Management

    The editorial focus of the International Journal of Stress Management® ( IJSM) is the assessment, management, and treatment of stress and trauma, whether emotional, cognitive, behavioral, or physiological. Personal, occupational, organizational, and societal issues relevant to stress identification and management are also covered.

  6. Work, Stress, Coping, and Stress Management

    Work stress is a generic term that refers to work-related stimuli (aka job stressors) that may lead to physical, behavioral, or psychological consequences (i.e., strains) that affect both the health and well-being of the employee and the organization. Not all stressors lead to strains, but all strains are a result of stressors, actual or perceived.

  7. Focus: The Science of Stress: Introduction: The Science of Stress

    Introduction: The Science of Stress. The term stress was widely popularized in its biological connotation in 1936 by Hans Selye, who defined it as "the non-specific response of the body to any demand for change" [ 1 ]. Stress was originally understood to be a collection of peripheral symptoms that accompany a variety of chronic illnesses ...

  8. Recent developments in stress and anxiety research

    Coinciding with WASAD's 3rd International Congress held in September 2021 in Vienna, Austria, this journal publishes a Special Issue encompassing state-of-the art research in the field of stress and anxiety. This special issue collects answers to a number of important questions that need to be addressed in current and future research.

  9. PDF Stress-Management Strategies among First-Year Students at a South ...

    Research article Stress-Management Strategies among First-Year Students at a South African University: A Qualitative Study Henry D. Mason* * Dr Henry D. Mason is a registered Research Psychologist and a social science researcher at the Tshwane University of Technology in Pretoria, South Africa. Email: [email protected] Abstract

  10. STRESS AND HEALTH: Psychological, Behavioral, and Biological

    Stressors have a major influence upon mood, our sense of well-being, behavior, and health. Acute stress responses in young, healthy individuals may be adaptive and typically do not impose a health burden. However, if the threat is unremitting, particularly in older or unhealthy individuals, the long-term effects of stressors can damage health.

  11. PDF Theories of Stress and Its Relationship to Health

    evidence of a generalized stress reaction. ything that causes an alarm reaction: It is 6. an the stressor that is the stimulus and not the stress itself. entical with the alarm reaction: These 7. phatic, and intestinal changes. In time, three id reactions are characterized by certain end-organ changes caused by stress and, hence, cannot be ...

  12. PDF Covid 19: Stress Management among Students and its Impact on Their ...

    educational institute schedule optional stress management classes, but students often lack the time to attend. An attempt is done through this paper to know the impact of stress among students and the necessity of managing it in order to make the learning effective. Keywords: Stress Management, Health, COVID-19, Stress level, pandemic INTRODUCTION

  13. Practice of stress management behaviors and associated factors among

    Stress is one of the top five threats to academic performance among college students globally. Consequently, students decrease in academic performance, learning ability and retention. However, no study has assessed the practice of stress management behaviors and associated factors among college students in Ethiopia. So the purpose of this study was to assess the practice of stress management ...

  14. The Impact of Stress Management Within Organizations and Its ...

    Despite that, stress can also be positive because it pushes people to do more and fulfill their obligations. It can add an extra boost to your way of thinking and their pace of doing their work. Moreover, stress is not uncontrollable. It can be managed in order to protect any sort of negative impacts/ effects. This is what is called stress ...

  15. A review of the effectiveness of stress management skills training on

    Introduction. Challenges during education create sources of stress for students, and put their health at risk, in a way that affects their learning abilities [].Therefore, paying attention to the factors that could have a positive impact on the agreeableness and could increase the positive psychological states, and as a result, the physical and psychological health of the students was of great ...

  16. PDF Stress Management: Tools Techniques & Strategies with Reference to

    International Journal of Research in Advent Technology, Vol.7, No.5, May 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org 141 ... effective Stress Management Program Additionally to theoretical view on the subject, suggest some main tools and techniques how to avoid, reduce or overcome with stress at the time of study span as well their ...

  17. Research Paper on Stress Management in Banks

    Research Paper on Stress Management in Banks - Free download as PDF File (.pdf), Text File (.txt) or read online for free. research paper on stress management in banks

  18. The impact of stress on body function: A review

    Based on the type, timing and severity of the applied stimulus, stress can exert various actions on the body ranging from alterations in homeostasis to life-threatening effects and death. In many cases, the pathophysiological complications of disease arise from stress and the subjects exposed to stress, e.g. those that work or live in stressful ...